A single-crystal neutron diffraction study on magnetic structure of CsCo2Se2
Liu Juanjuan1, Sheng Jieming1, Luo Wei1, Wang Jinchen1, Bao Wei1, †, Yang Jinhu2, Fang Minghu3, 4, Danilkin S A5
Department of Physics, Renmin University of China, Beijing 100872, China
Department of Physics, Hangzhou Normal University, Hangzhou 310036, China
Department of Physics, Zhejiang University, Hangzhou 310027, China
Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Bragg Institute, ANSTO, Locked Bag 2001, Kirrawee DC NSW 2232, Australia

 

† Corresponding author. E-mail: wbao@ruc.edu.cn

Project supported by the National Basic Research Program of China (Grant No. 2012CB921700), the National Natural Science Foundation of China (Grant No. 11190024), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant Nos. 17XNLF04 and 17XNLF06). J.S. acknowledges support from China Scholarship Council.

Abstract

The magnetic structure of CsCo2Se2 was investigated using single-crystal neutron diffraction technique. An antiferromagnetic transition with the propagation vector (0,0,1) was observed at TN = 78 K. The Co magnetic moment 0.772(6) μB at 10 K pointing in the basal plane couples ferromagnetically in the plane, which stacks antiferromagnetically along the c direction. Tuning and suppressing the interplane antiferromagnetic interaction may be crucial to induce a superconducting state in the material.

Reference
[1] Rotter M Tegel M Johrendt D 2008 Phys. Rev. Lett. 101 107006
[2] Huang Q Qiu Y Bao W Green M Lynn J Gasparovic Y Wu T Wu G Chen X H 2008 Phys. Rev. Lett. 101 257003
[3] Goldman A I Argyriou D N Ouladdiaf B Chatterji T Kreyssig A Nandi S Ni N Bud’ko S L Canfield P C McQueeney R J 2008 Phys. Rev. 78 100506(R)
[4] Zhao J Ratcliff W Lynn J W Chen G F Luo J L Wang N L Hu J P Dai P C 2008 Phys. Rev. 78 140504(R)
[5] Chen H Ren Y Qiu Y Bao W Liu R H Wu G Wu T Xie Y L Wang X F Huang Q Chen X H 2008 Europhys. Lett. 85 17006
[6] Rotter M Pangerl M Tegel M Johrendt D 2008 Angew. Chem. Int. Ed. 47 7949
[7] Guo J G Jin S F Wang G Wang S C Zhu K X Zhou T T He M Chen X L 2010 Phys. Rev. 82 180520(R)
[8] Krzton-Maziopa A Shermadini Z Pomjakushina E Pomjakushin V Bendele M Amato A Khasanov R Luetkens H Conder K 2011 J. Phys.: Condens. Matter 23 052203
[9] Mizuguchi Y Takeya H Kawasaki Y Ozaki T Tsuda S Yamaguchi T Takano Y 2011 Appl. Phys. Lett. 98 042511
[10] Fang M H Wang H D Dong C H Li Z J Feng C M Chen J Yuan H Q 2011 Europhys. Lett. 94 27009
[11] Wang A F Ying J J Yan Y J Liu R H Luo X G Li Z Y Wang X F Zhang M Ye G J Cheng P Xiang Z J Chen X H 2011 Phys. Rev. 83 060512(R)
[12] Wang H D Dong C H Li Z J Mao Q H Zhu S S Feng C M Yuan H Q Fang M H 2011 Europhys. Lett. 93 47004
[13] Zavalij P Bao W Wang X F Ying J J Chen X H Wang D M He J B Wang X Q Chen G F Hsieh P Y Huang Q Green M A 2011 Phys. Rev. 83 132509
[14] Bacsa J Ganin A Y Takabayashi Y Christensen K E Prassides K Rosseinsky M J Claridge J B 2011 Chem. Sci. 2 1054
[15] Bao W Li G N Huang Q Chen G F He J B Wang D M Green M A Qiu Y M Luo J L Wu M M 2013 Chin. Phys. Lett. 30 027402
[16] Bao W Huang Q Chen G F Green M A Wang D M He J B Qiu Y M 2011 Chin. Phys. Lett. 28 086104
[17] Ye F Chi S Bao W Wang X F Ying J J Chen X H Wang H D Dong C H Fang M H 2011 Phys. Rev. Lett. 107 137003
[18] Neilson J Llobet A Stier A Wu L Wen J J Tao J Zhu Y M Tesanovic Z Armitage N P McQueen T 2012 Phys. Rev. 86 054512
[19] Neilson J McQueen T Llobet A Wen J J Suchomel M 2013 Phys. Rev. 87 045124
[20] Wang H D Dong C H Mao Q H Khan R Zhou X Li C X Chen B Yang J H Su Q P Fang M H 2013 Phys. Rev. Lett. 111 207001
[21] Lu F Zhao J Z Wang W H 2012 J. Phys.: Condens. Matter 24 495501
[22] Chen H M Yang J H Cao C Li L Su Q P Chen B Wang H D Mao Q H Xu B J Du J H Fang M H 2016 Supercond. Sci. Technol. 29 045008
[23] Huan G Greenblatt M Croft M 1989 Eur. J. Solid State Inorg. Chem. 26 193
[24] Lizárraga R Ronneteg S Berger R Bergman A Mohn P Eriksson O Nordström L 2004 Phys. Rev. 70 024407
[25] Jeong H K Valla T Berger R Johnson P D Smith K E 2007 Europhys. Lett. 77 27001
[26] Newmark A R Huan G Greenblatt M Croft M 1989 Solid State Commun. 71 1025
[27] Ronneteg S Lumey M-W Dronskowski R Berger R 2006 J. Magn. Magn. Mater. 303 204
[28] Huan G Greenblatt M 1989 J. Less-Common Met. 156 247
[29] Ronneteg S Felton S Berger R Nordblad P 2006 J. Magn. Magn. Mater. 299 53
[30] Ronneteg S Berger R André G 2010 J. Magn. Magn. Mater. 322 681
[31] von Rohr F Krzton-Maziopa A Pomjakushin V Grundmann H Guguchia Z Schnick W Schilling A 2016 J. Phys.: Condens. Matter 28 276001
[32] Yang J H Chen B Wang H D Mao Q H Imai M Yoshimura K Fang M H 2013 Phys. Rev. 88 064406
[33] Danilkin S A Yethiraj M 2007 J. Neutron Res. 15 55
[34] Ritter C 2011 Solid Compounds of Transition Elements 170 263 269 Trans Tech Publications 10.4028/www.scientific.net/SSP.170.263
[35] Squires G L 2012 Introduction to the Theory of Thermal Neutron Scattering Cambridge Cambridge University Press 10.1017/CBO9781139107808
[36] Shirane G 1959 Acta Crystallogr. 12 282
[37] Taylor A Floyd R W 1950 Acta Crystallogr. 3 285
[38] Huan G Greenblatt M Ramanujachary K V 1989 Solid State Commun. 71 221
[39] Greaney M Huan G Ramanujachary K V Teweldemedhin Z Greenblatt M 1991 Solid State Commun. 79 803
[40] Broddefalk A Nordblad P Berger R 2000 Physica B: Condensed Matter 284-288 1317
[41] Guo Z N Zhang H H Wang D Han B L Jin S F Yuan W X 2016 Dalton Trans. 45 8248
[42] Qiu Y Bao W Huang Q Yildirim T Simmons J M Green M A Lynn J W Gasparovic Y C Li J Wu T Wu G Chen X H 2008 Phys. Rev. Lett. 101 257002
[43] Lee C H Iyo A Eisaki H Kito H Fernandez-Diaz M T Ito T Kihou K Matsuhata H Braden M Yamada K 2008 J. Phys. Soc. Japan 77 083704